Properties of Exponents and Logarithms

Exponents

Let a and b be real numbers and m and n be integers. Then the following properties of exponents hold, provided that all of the expressions appearing in a particular equation are defined.

1.
$$a^m a^n = a^{m+n}$$

2.
$$(a^m)^n = a^{mn}$$

3.
$$(ab)^m = a^m b^m$$

4.
$$\frac{a^m}{a^n} = a^{m-n}, \ a \neq 0$$

4.
$$\frac{a^m}{a^n} = a^{m-n}, \ a \neq 0$$
 5. $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \ b \neq 0$ 6. $a^{-m} = \frac{1}{a^m}, \ a \neq 0$

6.
$$a^{-m} = \frac{1}{a^m}, a \neq 0$$

7.
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

8.
$$a^0 = 1, a \neq 0$$

7.
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
 8. $a^0 = 1, a \neq 0$ 9. $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$

where m and n are integers in properties 7 and 9.

Logarithms

Definition: $y = \log_a x$ if and only if $x = a^y$, where a > 0. In other words, logarithms are exponents.

Remarks:

- $\log x$ always refers to \log base 10, i.e., $\log x = \log_{10} x$.
- $\ln x$ is called the natural logarithm and is used to represent $\log_e x$, where the irrational number $e \approx 2.71828$. Therefore, $\ln x = y$ if and only if $e^y = x$.
- Most calculators can directly compute logs base 10 and the natural log. For any other base it is necessary to use the change of base formula: $\log_b a = \frac{\ln a}{\ln b}$ or $\frac{\log_{10} a}{\log_{10} b}$.

Properties of Logarithms (Recall that logs are only defined for positive values of x.)

For the natural logarithm For logarithms base a

$$1. \, \ln xy = \ln x + \ln y$$

1.
$$\log_a xy = \log_a x + \log_a y$$

$$2. \ln \frac{x}{y} = \ln x - \ln y$$

1.
$$\log_a xy = \log_a x + \log_a y$$

2. $\log_a \frac{x}{y} = \log_a x - \log_a y$
3. $\log_a x^y = y \cdot \log_a x$

$$3. \ln x^y = y \cdot \ln x$$

$$3. \log_a x^y = y \cdot \log_a x$$

4.
$$\ln e^x = x$$

$$4. \log_a a^x = x$$

5.
$$e^{\ln x} = x$$

$$5. \ a^{\log_a x} = x$$

Useful Identities for Logarithms

For the natural logarithm For logarithms base a

1.
$$\ln e = 1$$

1.
$$\log_a a = 1$$
, for all $a > 0$

2.
$$\ln 1 = 0$$

2.
$$\log_a 1 = 0$$
, for all $a > 0$